Abstract
We provide an analytical solution for studying the near-field optical effect of a core-shell nanostructure in proximity to a flat surface, within quasi-static approximation. The distribution of electrostatic potential and the field enhancement in this complex geometry are obtained by solving a set of linear equations. This analytical result can be applied to a wide range of systems associated with near-field optics and surface plasmon polaritons. To illustrate the power of this technique, we study the field-attenuation effect of an oxidized shell in a silver tip in a near-field scanning microscope. The thickness of oxidized layer can be monitored by measuring the intensity of light. We also find a linear relation between resonant frequency and temperature in an Ag-Au core-shell structure, which provides insight for local temperature detection with nm scale resolution. Our results also show good agreement with recent finite element method results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.