Abstract
Top-illumination tip-enhanced Raman scattering (TI-TERS) has recently emerged as a promising near-field vibrational spectroscopy method that can be adapted on an upright optical microscope. With a relatively simplified optics, TI-TERS can probe both opaque and transparent samples making them a promising tool in nanoscale chemical analysis. One of the critical components of TI-TERS is the plasmonic nano-tip used to enhance the Raman spectroscopic signature. Herein, we numerically studied the near-field optical properties of conventional gold tip (20 nm radius of curvature) and two varieties of optical antenna-based tips in the context of TI-TERS. Optical antenna-based tips included a 40-nm gold nanoparticle attached to a dielectric tip and a 50-nm equilateral gold nanotriangle attached to a dielectric tip. We evaluated the Raman enhancement spectra as a function of experimental variables such as underlying substrate and angle of the tip with respect to substrate normal. Our analysis revealed that conventional gold tip facilitates superior enhancement and optical antenna-based tips facilitate superior spectral bandwidth and lateral resolution in TI-TERS configuration. Tips with higher enhancement can be harnessed for ultra-sensitive measurements, and tips with broader spectral bandwidth can be utilized to enhance both Stokes and anti-Stokes component of the Raman spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.