Abstract

We report the near-field nanofocusing through a plasmonic lens containing a Bragg reflector and a converging lens, which consist of semitransparent annular grooves milled into a gold film with different periods along the radial direction. By illuminating the structure with a linearly polarized light, two tightly focal spots were detected by scanning near-field optical microscope. This plasmonic lens has considerably reduced direct light transmission, making the focal spots obvious. By raising the radius of half of every groove, one single spot was obtained. Furthermore, theoretical simulations prove that the light intensity of the focal spots can be doubled through adding the Bragg reflector surrounding the converging lens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.