Abstract

The near-field mixing of effluent from buoyant and nonbuoyant flows from outfalls discharging into a cross-flowing ambient current in trapezoidal channels has been investigated. A physical model was scaled to represent a typical large outfall into one of the connecting channels of the Great Lakes system. The discharged jet was measured in detail to determine the velocity and concentration fields. The excess velocities and concentrations were found to follow the Gaussian distribution. Empirical expressions for the jet trajectories, minimum dilutions, and plume widths were derived. A correction factor has been introduced to the concentration distribution to ensure mass conservation. The calibrated model was verified by comparison with field data and the results of other near-field models (PDS, MIT, and CORMIX). Key words: mixing, near field, pollutant transport, outfall, buoyant flow, non-buoyant flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.