Abstract
A theory is presented for the polar near-field magneto-optical Kerr effect in scattering of light from a linear nanoprobe. In the framework of Green’s function technique, a solution is obtained for the problem of near-field magneto-optics and apertureless scanning microscopy of lateral magnetic inhomogeneities (domains) with nanometer scale. The probe in the form of a nanowire and the sample with a near-surface magnetic nanolayer are considered to support surface plasmons. Electromagnetic coupling between a nanow-ire and a sample surface (polarizability of the complex “probe plus image charges”) is taken into account self-consistently. Magneto-induced polarization of an ultrathin near-surface layer is treated within linear approximation in magnetization which is perpendicular to the layer. The polarization, spectral and angular characteristics of light scattering modulated by magnetization and resonantly enhanced by surface plasmons are examined. Dependence of the near-field magneto-optical response on the probe-domain distance along the sample surface is obtained. The resolution power of scanning near-field microscopy is estimated and the factors to influence it are pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.