Abstract

The nonlinear optical response of semiconductor nanowires has potential application for frequency conversion in nanoscale optical circuitry. Here, second- and third-harmonic generation (SHG, THG) are imaged on single zinc oxide (ZnO) nanowires using near-field scanning optical microscopy (NSOM). The absolute magnitudes of the two independent (2) elements of a single wire are determined, and the nanowire SHG and THG emission patterns as a function of incident polarization are attributed to the hexagonal nanowire geometry and (2) tensor symmetry. Semiconductor nanowires are of current interest because of their unique electrical and optical properties. 1-3 In particular, their nonlinear optical properties suggest potential applications as frequency converters or logic/routing elements in nanoscale optoelectronic circuitry. A linear optical property of nanowires, photoluminescence (PL) polarization, has recently been studied in single indium phosphide nanowires. 2 In that case, the PL polarization is based upon the classical electromagnetic properties of a dielectric cylinder and averages ca. 91%. In contrast, coherent nonlinear optical phenomena, such as second- and third-harmonic generation (SHG and THG, respectively), depend explicitly on the crystal lattice structure of the medium, which could yield a very high (nearly 100%) polarization selectivity. In addition, the temporal response of the nonresonant harmonic generation is similar to the pulse width of the pump laser, in some cases 20 fs, 4 while incoherent processes are at least 2-4 orders of magnitude slower. Moreover, nonresonant SHG is essentially independent of wavelength below the energy band gap of semiconductor materials, most often including the 1.3-1.5 Im wavelength region typically used in optical fiber

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call