Abstract

Cilia can beat collectively in the form of a metachronal wave, and we investigate how near-field hydrodynamic interactions between cilia can influence the collective response of the beating cilia. Based on the theoretical framework developed in the work of Meng et al. (Meng et al. 2021 Proc. Natl Acad. Sci. USA 118, e2102828118), we find that the first harmonic mode in the driving force acting on each individual cilium can determine the direction of the metachronal wave after considering the finite size of the beating trajectories, which is confirmed by our agent-based numerical simulations. The stable wave patterns, e.g. the travelling direction, can be controlled by the driving forces acting on the cilia, based on which one can change the flow field generated by the cilia. This work can not only help to understand the role of the hydrodynamic interactions in the collective behaviours of cilia, but can also guide future designs of artificial cilia beating in the desired dynamic mode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.