Abstract
Abstract High-resolution maps of surface rupturing earthquakes are essential tools for quantifying rupture hazard, understanding the mechanics of rupture propagation, and interpreting evidence of past earthquakes in the landscape. We present highly detailed maps of five portions of the surface rupture of the 2019 Ridgecrest earthquakes, derived from 5 cm per pixel aerial imagery and 2–20 cm per pixel unmanned aerial vehicle imagery. Our high-resolution maps cover areas of complexity and distributed deformation, sections in which strain is very localized, and areas where the rupture breaks through sediment and bedrock, ensuring sampling of the diverse rupture styles of this earthquake sequence. These maps reveal the near-field deformation of the surface rupture with a high level of detail, resolving the extent of secondary fracturing, lateral spreading, and liquefaction features that are below the resolution of airborne lidar data, field mapping, and geodesy. These data may serve as a machine learning training dataset, and offer opportunities for detailed kinematic analysis and high-resolution probabilistic displacement hazard analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.