Abstract

The temporal evolution of slip on surface ruptures during an earthquake is important for assessing fault displacement, defining seismic hazard and for predicting ground motion. However, measurements of near-field surface displacement at high temporal resolution are elusive. We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30th October 2016 Mw 6.6 Vettore earthquake (Central Italy), using low-cost Global Navigation Satellite System (GNSS) receivers located in the footwall and hangingwall of the Mt. Vettore - Mt. Bove fault system, close to new surface ruptures. We observe a clear temporal and spatial link between our near-field record and InSAR, far-field GPS data, regional measurements from the Italian Strong Motion and National Seismic networks, and field measurements of surface ruptures. Comparison of these datasets illustrates that the observed surface ruptures are the propagation of slip from depth on a surface rupturing (i.e. capable) fault array, as a direct and immediate response to the 30th October earthquake. Large near-field displacement ceased within 6–8 seconds of the origin time, implying that shaking induced gravitational processes were not the primary driving mechanism. We demonstrate that low-cost GNSS is an accurate monitoring tool when installed as custom-made, short-baseline networks.

Highlights

  • General rights This document is made available in accordance with publisher policies

  • We present a novel record of near-field co-seismic displacement, measured with 1-second temporal resolution during the 30th October 2016 Mw 6.6 Vettore earthquake (Central Italy), using low-cost Global Navigation Satellite System (GNSS) receivers located in the footwall and hangingwall of the Mt

  • We observe a clear temporal and spatial link between our nearfield record and InSAR, far-field GPS data, regional measurements from the Italian Strong Motion and National Seismic networks, and field measurements of surface ruptures. Comparison of these datasets illustrates that the observed surface ruptures are the propagation of slip from depth on a surface rupturing fault array, as a direct and immediate response to the 30th October earthquake

Read more

Summary

Looking N

Network comprising of three different west-dipping synthetic fault splays and two antithetic structures (Fig. 1). Preliminary InSAR measurements spanning the 26th October and 30th October earthquakes using Sentinel-1 data of 26 October – 1 November reveal low far-field deformation gradients (1–5 cm/km), with higher gradients up to 30 cm/km observed closer to the Mt Vettore - Mt. Bove Fault System[10]. We recorded positional data using custom-made GNSS units that are designed around a low-cost U-blox NEO-M8T GNSS receiver chip, and built to be compact, robust, weatherproof, and power-efficient. The GNSS chips allow GNSS constellations to be tracked using a single frequency over the L1 band and provide observation data of pseudo-range and carrier phase at rates of up to 10 Hz. The GNSS chips allow GNSS constellations to be tracked using a single frequency over the L1 band and provide observation data of pseudo-range and carrier phase at rates of up to 10 Hz

Hangingwall receiver
Comparison of GNSS and other datasets
INGV Origin time
Timing of ground rupture
Methods
Author Contributions
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.