Abstract

We consider the near-field radiative energy transfer between two separated parallel plates: graphene supported by a substrate and a magneto-optic medium. We first study the scenario in which the two plates have the same temperature. An electric current through the graphene gives rise to nonequilibrium fluctuations and induces energy transfer. Both the magnitude and direction of the energy flux can be controlled by the electric current and an in-plane magnetic field in the magneto-optic medium. This is due to the interplay between the nonreciprocal photon occupation number in the graphene and nonreciprocal surface modes in the magneto-optic plate. Furthermore, we report that a tunable thermoelectric current can be generated in the graphene in the presence of a temperature difference between the two plates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call