Abstract

This paper is concerned with near-field source localization for scenarios where coherent narrowband sources exist. In this paper, we propose a new method in which we design a general planar array with a covariance matrix whose rank is not decreased by the coherence between sources. Moreover, conditions for the sensor locations in the designed planar array are derived to reach maximum effective array aperture. The proposed method uses second order statistics and features a separable range-bearing search to reduce the computational complexity. This method localizes near-field sources with a number of one-dimensional searches in two steps. In the first step, ranges of sources is estimated using one 1D search and in the second step, the bearing of each signal source is estimated using the corresponding range estimated in the first step. Simulation results show that the performance of the proposed method is comparable with the Cramer–Rao bound.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call