Abstract

AbstractThe near‐field features of graphene plasmons (GPs) using a recently developed photo‐induced force microscopy (PiFM) technique are characterized here. The GPs are excited by a mid‐infrared laser beam obliquely incident on graphene suspended over a metallic grating with a dielectric spacer. The PiFM records the optical force yielded by the interaction between the electric field of GPs in the normal direction and dipoles in a metallic tip. The magnitude of the optical force is proportional to the field intensity of the GPs. By detecting the interference pattern of GPs on the grating trenches, the wavelength and propagation distance of GPs can be obtained. The PiFM technique demonstrated here provides a powerful tool to precisely characterize GPs in a deeply subwavelength scale and aid in the design of nanoscale optical devices based on graphene.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.