Abstract

Current near-field antenna measurement methods are commonly based on metal probes, with the accuracy limited and hard to be optimized due to the drawbacks they suffered, such as large volume, severe metal reflection/interference and complex circuit signal processing in parameter extracting. In this work, a novel method is proposed based on Rydberg atom in the near-field antenna measurement, which can offer a higher accuracy due to its intrinsic character of traceability to electric field. Replacing the metal probe in near-field measurement system by Rydberg atoms contained in a vapor cell (probe), amplitude- and phase- measurements on a 2.389 GHz signal launched out from a standard gain horn antenna are conducted on a near-field plane. They are transformed to far-field pattern and agree well with simulated results and measured results by using a traditional metal probe method. A high precision in longitudinal phase testing with an error below 1.7% can be achieved.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.