Abstract

Excitation of photo-current transients at semiconductor surfaces by subpicosecond optical pulses gives rise to emission of electromagnetic pulses of terahertz (THz) frequency radiation. To correlate the THz emission with the photo-excited charge density distribution and the photo-current direction, we mapped near-field and far-field distributions of the generated THz waves from GaAs and Fe-doped InGaAs surfaces. The experimental results show that the charge dynamics in the plane of the surface can radiate substantially stronger THz pulses than the charge dynamics in the direction normal to the surface, which is generally regarded as the dominant origin of the emission.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.