Abstract
Characterization of the interphase region in carbon fiber reinforced polymer (CFRP) is challenging because of the length scale involved. The interpretation of measured load-displacement curves using indentation is affected by the lack of analytical solutions that account for the fiber constraint effect. A combination of AFM (Atomic Force Microscopy) based indentation and FE (Finite Element) simulations showed a gradient in the elastic modulus of the interphase evaluated along a radial line from the fiber. 3D FEA (Finite Element Analysis) indicated that fiber constraint effect is significant in the region less than 40 nm away from the fiber. Nonetheless, the apparent rise in elastic modulus due to fiber constraint is limited when compared to the gradient in the elastic modulus of the interphase. Additionally, this technique is used to demonstrate that UV irradiation causes a rapid decrease in the modulus of the region near the fiber due to photocatalytic degradation of carbon fiber but subsequently increases due to high cross-linking. Whereas, the modulus of the matrix at 8 mm away from the fiber decreased by 32% after 24 h of UV irradiation. This indicates that the response of epoxy to UV irradiation is influenced by the proximity to the reinforcement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.