Abstract
Among various specifications of near eye display (NED) devices, a compact formfactor is essential for comfortable user experience but also the hardest one to accomplish due to the slowest progresses. A pinhole/pinlight array based light-field (LF) technique is considered as one of the candidates to achieve that goal without thicker and heavier refractive optics. Despite those promising advantages, however, there are critical issues, such as dark spots and contrast distortion, which degrade the image quality because of the vulnerability of the LF retinal image when the observer's eye pupil size changes. Regardless of previous attempts to overcome those artifacts, it was impossible to resolve both issues due to their trade-off relation. In this paper, in order to resolve them simultaneously, we propose a concept of multiplexed retinal projections to integrate the LF retinal image through rotating transitions of refined and modulated elemental images for robust compensation of eye pupil variance with improved conservation of contrast distribution. Experimental demonstrations and quantitative analysis are also provided to verify the principle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.