Abstract

We study the non-equilibrium dynamics of a one-dimensional complex Sachdev-Ye-Kitaev chain by directly solving for the steady state Green's functions in terms of small perturbations around their equilibrium values. The model exhibits strange metal behavior without quasiparticles and features diffusive propagation of both energy and charge. We explore the thermoelectric transport properties of this system by imposing uniform temperature and chemical potential gradients. We then expand the conserved charges and their associated currents to leading order in these gradients, which we can compute numerically and analytically for different parameter regimes. This allows us to extract the full temperature and chemical potential dependence of the transport coefficients. In particular, we uncover that the diffusivity matrix takes on a simple form in various limits and leads to simplified Einstein relations. At low temperatures, we also recover a previously known result for the Wiedemann-Franz ratio. Furthermore, we establish a relationship between diffusion and quantum chaos by showing that the diffusivity eigenvalues are upper bounded by the chaos propagation rate at all temperatures. Our work showcases an important example of an analytically tractable calculation of transport properties in a strongly interacting quantum system and reveals a more general purpose method for addressing strongly coupled transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.