Abstract

The structure of valence and unoccupied electron orbitals and the neighbouring electron density distribution of atoms and ions in amorphous systems can be examined through use of resonance in the elastic photon scattering-cross-section in the vicinity of core atomic orbital energies. So-called anomalous X-ray scattering (AXS) is a mode of analysis that offers similar information to that of EXAFS but can be obtained concurrently with diffraction mode imaging. Of interest is whether the dilute-ion aqueous system provides an environment suitable for testing independent particle approximation (IPA) predictions. With the aqueous environment as the reference system for calibrating relative cross-sections, particular challenges include photons scattered by the medium being subsequently absorbed by the ion, limiting the thickness of the attenuating medium and motivating use of bright synchrotron photon sources where tunable X-rays are obtained at sub-eV resolution using a Si 111 monochromator. Measured scattering intensities and fluorescent yields were compared and shown to agree qualitatively with Monte Carlo calculations utilising amplitudes calculated from modified form-factors with anomalous scatter factors at a resolution of several eV determined from the Dirac–Slater exchange potential. Experimentally determined form-factors for pure water were used to calibrate fluorescent yield and elastic scattering intensities for measurement of the energy dependent variation of these quantities near edge and XRF imaging of the Zn concentration in wax mounted, formalin fixed, breast tumour samples. Results indicate the distribution of Zn at higher resolution than sampling dimensions used in previous studies. Shifts in the position and profile of K-edge absorption and elastic scattering features in aqeuous Zn, Zn doped sol–gel glass and Zn in tissue are shown to reflect changes in the atomic charge state and environment and offer support for the presence of non-nutrient Zn bearing components at elevated concentrations in tumour, of which the matrix-metalloprotein MMP-II is a likely contender.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call