Abstract

Rate constants are reported for near-diffusion-controlled reactions of muonium in sub- and supercritical water. Specifically, the spin-exchange interaction of muonium with Ni2 + and the addition of muonium to hydroquinone were studied as a function of temperature and pressure over a wide range of conditions, from standard to over 400 °C and 400 bar (the critical point of water is at 374 °C, 220 bar). At elevated temperatures the rate constants were found to have values far below those predicted by Stokes–Einstein–Smoluchowski theory. Furthermore, the temperature variation of the isobaric rate constants has a maximum in the subcritical region. The pressure dependence of the rate constants increases with temperature, consistent with the increase in compressibility of the solvent; the effective activation volumes are negative. Various models are explored to interpret the temperature and density dependence of the kinetic data. It is concluded that a key factor in the drop of rate constants at high temperature is the cage effect, in particular the number of collisions between a pair of reactants over the duration of their encounter.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.