Abstract

Emergence of new diseases and elimination of existing diseases is a key public health issue. In mathematical models of epidemics, such phenomena involve the process of infections and recoveries passing through a critical threshold where the basic reproductive ratio is 1. In this paper, we study near-critical behaviour in the context of a susceptible-infective-recovered epidemic on a random (multi)graph on n vertices with a given degree sequence. We concentrate on the regime just above the threshold for the emergence of a large epidemic, where the basic reproductive ratio is 1 + omega (n) n^{-1/3}, with omega (n) tending to infinity slowly as the population size, n, tends to infinity. We determine the probability that a large epidemic occurs, and the size of a large epidemic. Our results require basic regularity conditions on the degree sequences, and the assumption that the third moment of the degree of a random susceptible vertex stays uniformly bounded as n rightarrow infty . As a corollary, we determine the probability and size of a large near-critical epidemic on a standard binomial random graph in the ‘sparse’ regime, where the average degree is constant. As a further consequence of our method, we obtain an improved result on the size of the giant component in a random graph with given degrees just above the critical window, proving a conjecture by Janson and Luczak.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.