Abstract

Optical reflectivity, removal rate and ablative recoil pressure magnitudes were measured as a function of laser fluence during high-power UV nanosecond laser ablation of graphite. At low fluences only melting and weak surface vaporization of molten carbon were observed. At moderate fluences there is a very narrow fluence interval where the reflected fluence starts to saturate, while the removal rate and ablative recoil pressure rise drastically in a correlated manner, indicating the onset of a near-critical surface phase explosion. Then, at higher fluences the reflected fluence, removal rate and recoil pressure saturate with an appearance of a luminous plume, altogether indicating negligible specular reflectance and absorbance on the target surface due to its complete screening by the highly-absorbing laser plume. The overall strong correlation between the removal rate and recoil pressure magnitudes may indicate rather quasi-continuous removal of the near-critical superheated molten carbon layer by a propagating unloading wave in the absence of a crucial sub-surface temperature maximum in the layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.