Abstract

Carrier diffusion from heavily doped contact regions has been experimentally monitored with resistivity measurements of variable thickness Si: P extrinsic photoconductors (n +−n−n +). Modeling of free carrier diffusion at the interface of heavily doped contacts and highly resistive bulk at low temperatures predicts extended regions (5–30 μm) of excess carriers in high purity materials so that, in thin device structures, free carrier diffusion profiles from each contact will overlap and determine the resistivity of the device. In this work, a decrease in resistivity of four orders of magnitude was observed in a 5 μm thick structure compared to a 10 μm thick device. The resistivity of an ohmic structure in the thin limit is strongly dependent on the bulk and near-contact compensation, and resistivity measurements can be used as a sensitive measure of compensation at interfaces or in the tail of implanted layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.