Abstract

We investigate the radial extent of the eigenvalue distribution for Yang-Mills type matrix models. We show that, a three matrix Gaussian model with complex Myers coupling, to leading order in strong coupling is described by commuting matrices whose joint eigenvalue distribution is uniform and confined to a ball of radius R=(3Pi/2g)^(1/3). We then study, perturbatively, a 3-component model with a pure commutator action and find a radial extent broadly consistent with numerical simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.