Abstract
The set-theoretic principle of near coherence of filters (NCF) is lnown to be neither provable nor refutable from the usual axioms of set theory. We show that NCF is equivalent to the following statements, among others: (1) The ideal of compact operators on Hilbert space is not the sum of two smaller ideals. (2) The Stone-tech remainder of a half-line has only one composant. (This was first proved by J. Mioduszewski.) (3) The partial ordering of slenderness classes of abelian groups, minus its top element, is directed upward (and in fact has a top element). Thus, 11 these statements are also consistent and independent.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.