Abstract

In this contribution we introduce an extrinsic information transfer (EXIT) chart matching technique for the design of two serially concatenated irregular codecs, each constituted by a variety of component codes. This approach facilitates a higher degree of design freedom than matching the EXIT function of an irregular codec to that of a regular codec, comprising only a single component code. As a result, a narrower EXIT chart tunnel can be created, facilitating operation at Eb/N0 values that are closer to the channel's capacity bound. This is demonstrated for a serial concatenation of iteratively decoded irregular variable length coding (IrVLC) and irregular unity rate coding (IrURC), which is favourably compared with an IrVLC and regular unity rate coding (URC) based benchmarker. Finally, we show that the iterative decoding complexity of our IrVLCIrURC scheme can be reduced by about 25% upon employing a method of jointly performing EXIT chart matching, while seeking a reduced iterative decoding complexity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.