Abstract

Finite element method (FEM) simulations have been carried out on free-standing and finite dielectric substrate-supported eccentric (i) silica core-gold nanoshell dimers and (ii) gold core-silica nanoshell dimers for understanding their near- and far-field plasmonic properties. In the case of eccentric silica core-gold nanoshell dimers, multiple peaks are observed in the near- and far-field spectra due to the plasmon hybridization. The number of peaks is found to be sensitive to the core offset parameters of the nanoshells forming nanodimer. The wavelength locations of the peaks due to the constructive coupling of the lower order modes found relatively more sensitive to the dielectric substrate. The number of peaks in the near- and far-field spectra found the same presence and absence of the dielectric substrate. The values of full width at half maximum (FWHM) of the peaks observed in the near-field spectra are found larger as compared to those observed in the far-field spectra. In contrast, in the case of eccentric gold core-silica nanoshell dimers, multiple peaks have not been observed. The FWHM of the observed peak is found sensitive to the core offset parameters of the nanoshells, and the number of peaks in the near field- and far-field spectra found not same in the presence and absence of the dielectric substrate. Moreover, the differences in near- and far-field spectra of plasmonically coupled (i) concentric nanoshells, (ii) eccentric nanoshells, and (iii) concentric and eccentric nanoshells also investigated numerically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call