Abstract

Formation of volatile nickel carbonyls with CO in catalytic reaction is one of the mechanisms of catalyst deactivation. CO is one of the most popular probe molecules to study the surface properties in model catalysis. Under ultra-high vacuum (UHV) conditions, the problem of nickel carbonyl impurity almost does not exist in the case that a high purity of CO is used directly. While in the near ambient pressure (NAP) range, nickel carbonyl is easily found on the surface by passing through the Ni containing tubes. Here, the NAP techniques such as NAP-X-ray photoelectron spectroscopy and NAP-scanning tunneling microscopy are used to study the adsorption of nickel carbonyl contaminated CO gas on Cu(111) surface in UHV and NAP conditions. By controlling the pressure of contaminated CO, the Ni-Cu bimetallic catalyst can form on Cu(111) surface. Furthermore, we investigate the process of CO adsorption and dissociation on the formed Ni-Cu bi-metal surface, and several high-pressure phases of CO structures are reported. This work contributes to understanding the interaction of nickel carbonyl with Cu(111) at room temperature, and reminds the consideration of CO molecules contaminated by nickel carbonyl especially in the NAP range study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call