Abstract

Land degradation destroys human habitats, and vegetation is a marker reflecting land degradation. In this article, the Balochistan Province of Pakistan, which has a fragile ecological environment, was selected as a typical case to analyze its land degradation over 21 years. Relevant studies that used the NDVI and remote sensing data to monitor land degradation already existed. Based on the data product of MODIS, this study obtained the spatio-temporal trends of the normalized difference vegetation index (NDVI) changes from 2000 to 2020 using the sen+ Mann–Kendall (MK) test and Hurst index and analyzed the driving factors of land degradation and restoration by employing the multiple stepwise regression method. The residual analysis method was an effective tool for distinguishing between anthropogenic and climatic impacts, given that not all regions have a significant correlation between the NDVI and rainfall. The main climatic drivers of the NDVI were derived based on the Geodetector analysis and stripped of the main climatic factors by residual analysis to explore the influence of anthropogenic factors on the NDVI. The results show the following: (1) Balochistan is dominated by land restoration. Land restoration is mainly dominated by climate as well as both climate and human factors, and land degradation is mainly dominated by climate and human factors. (2) The Geodetector-based study found high correlations between the NDVI and TMP, MAP, AET and PET, complementing most previous residual analyses that considered only precipitation and temperature. In Balochistan, TMP, AET, PET and MAP were the dominant climatic factors affecting the spatial distribution of the NDVI; TMP with MAP and TMP with AET were the main interactive factors in the spatial distribution of the NDVI. (3) The article quantifies the impact of the anthropogenic drivers on land degradation. Human activities positively influenced the NDVI in 91.02% of the area and negatively influenced it in 8.98% of the area. (4) The overall trend of the NDVI was mainly stable, with stronger improvement than degradation, and showed strong persistence. The above findings enrich our understanding of the climatic impacts of land degradation and human impacts in arid or semi-arid regions and provide a scientific basis for ecological engineering to achieve ecological conservation and quality development in Balochistan, Pakistan.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.