Abstract

The development and design of electrode materials with high electrochemical performance is of great importance for developing of supercapacitors, which are accepted as reliable power sources for portable and electric vehicles. Here, we have developed for the first time a ternary nanocomposite via a simple approach in which MnO2 and polyaniline (PANI) are simultaneously synthesized on nitrogen-doped reduced graphene oxide (N-rGO) surface using dodecylbenzenesulfonic acid (DBSA) and sulfuric acid (H2SO4) as co-dopants. The synergistic effect between combined N-rGO, MnO2, and co-doped PANI resulted in the N-rGO-MnO20.5-PANI6 nanocomposite exhibiting high capacitance (405.2 F/g) at a current density of 0.5 A/g and splendid rate capability (capacitance retention of 96.6 % at 5 A/g) with long cycle stability (86.1 % after 5000 cycles) in a symmetrical two-electrode configuration. The energy and power density of N-rGO-MnO2-PANI were determined to be 13.9 Wh/kg and 260.6 W/kg at a current density of 1 A/g, respectively. Consequently, the ternary nanocomposite with DBSA and H2SO4 co-doped PANI and MnO2 structures on N-rGO surface has appealing electrochemical performance and indicates great potential as an electrode material for supercapacitor applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.