Abstract

SiO2@C nanospheres were fabricated by polymerization of dopamine in the presence of tetraethyl orthosilicate followed by carbonization and the SiO2 was chemically etched away to obtain hollow N-doped carbon nanospheres (N-CNs) to host sulfur. The resulting material (S@N-CNs) was used as the cathode material of a Li-S battery. Results indicate that the S@N-CNs can effectively suppress the volume expansion of sulfur and the shuttle effect of polysulfides during charge and discharge. Nitrogen doping improves the electrical conductivity of the N-CNs. The initial reversible capacity of the S@N-CN electrode at 0.2 C is 1 179 mAh·g-1, which remains at 540 mAh·g-1 after 100 cycles. The electrode has excellent rate capability (343 mAh·g-1 at 1 C and 247 mAh·g-1 at 2 C).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.