Abstract

Monitoring acetylcholinesterase (AChE) and its inhibitors is of importance for early diagnosis and therapy of neurological diseases. Herein, N-doped carbon nanotubes supported Fe-Mn dual-single-atoms (FeMn DSAs/N-CNTs) were fabricated by a simple pyrolysis, as thoroughly figured out by a series of the characterization techniques. The peroxidase-like activity of FeMn DSAs/N-CNTs was investigated by catalytic oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) to generate rich hydroxyl radicals (·OH) in the H2O2 system, which effectively catalyzed colorless TMB oxidation to blue oxidized TMB (ox-TMB). Besides, the peroxidase-like activity was greatly weakened by thiocholine (derived from AChE), accompanied by making blue ox-TMB fade. Impressively, the highly improved peroxidase-like property is further evidenced by density functional theory (DFT) calculations, where the dual-single atoms show a lower energy barrier (0.079 eV) and their interactions with the N-CNTs played critical roles for producing the oxygen radicals. By virtue of the nanozyme, a low-cost, specific, and sensitive colorimetric sensor was built for detection of AChE with a broader linear range of 0.1-30 U L-1 and a lower limit of detection (LOD, 0.066 U L-1), combined with its feasible analysis in human serum samples. Also, this platform was applied for measuring huperzine A inhibitor with a wide linear scope of 5-500 nM and a LOD down to 4.17 nM. This strategy provides a low-cost and convenient approach for early clinical diagnosis and drug development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call