Abstract

Exploitation of high-efficiency catalysts toward methanol oxidation is a pivotal step to promote the commercialization of direct methanol fuel cells. Herein, a strategy is demonstrated to prepare nitrogen-doped carbon nanotubes with NiFe metal particles (NiFe@N-CNT) as the carrier material of Pt nanoparticles. Combining SEM and TEM, NiFe metal particles are fully encapsulated in N-CNTs, and they form the metal core and carbon nanotube shell structure based on the structural cooperation mechanism. Surprisingly, the as-prepared Pt/NiFe@N-CNT catalyst shows superior catalytic activity (1023 mA mg-1Pt) compared to commercial Pt/C (392 mA mg-1Pt), Pt/Ni@N-CNT (331 mA mg-1Pt), and Pt/Fe@N-CNT (592 mA mg-1Pt). After 1000 cycles, Pt/NiFe@N-CNT maintains the optimal catalytic activity (588 mA mg-1Pt), and its mass activity loss is 42.5%, which is better than those of commercial Pt/C (64.0%), Pt/Ni@N-CNT (67.7%), and Pt/Fe@N-CNT (59.6%) catalysts, indicating that the Pt/NiFe@N-CNT catalyst achieves excellent catalytic activity and stability, which stems chiefly from the homodispersed Pt nanoparticles and the generation of the metal core-carbon nanotube shell based on the structural cooperation mechanism. This study reports the facile construction of a metal core-carbon nanotube shell structure, which intrinsically ameliorates structural collapse of carrier material, thereby improving the catalytic stability of the Pt-based catalyst and broadening the view for design of other desire catalysts in methanol oxidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call