Abstract

The Internet of Things (IoT) consists of smart devices that can capture and sense real-time information for monitoring. IoT is typically applied in some delay-sensitive fields, so it is significant to achieve efficient IoT-based data communications. IoT works based on the IP-based end-to-end data delivery mechanism, but this end-to-end mechanism is inefficient in the IoT scenarios. The Named Data Networking (NDN) is a new data communication paradigm and its advantages might help improve IoT-based data communication efficiency. However, IoT and NDN have different architectures and IoT devices have limited resources, so it is hard to directly deploy NDN in IoT. To exploit the advantages of NDN to improve IoT-based data communication efficiency, we are motivated to integrate IoT with Edge computing and clustering (IoTE) so that edge devices and cluster heads can help achieve request aggregation and in-network caching in NDN. Based on the idea, we propose an NDN-based IoTE (NIoTE) framework so that IoT devices can employ the advantages of NDN to retrieve data from the nearest provider via one data communication process. The experimental results verify the advantages of NIoTE, and demonstrate that NIoTE effectively decreases data communication latency and costs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.