Abstract
We demonstrate NDIR CO2 gas sensing using CMOS compatible MEMS ScAlN-based pyroelectric detectors. The ScAlN-based pyroelectric detectors are fabricated using 8-inch wafer level technology with 12 % Sc-doped AlN deposited at a temperature of ∼200 °C. Together with a blackbody thermal emitter, a 10 cm long enclosed gas channel with only inlet and outlet holes connected to tubings, and testing using 2 different reference gases (N2 and synthetic air), measurements show voltage signal drop due to CO2 gas absorption at the 4.26 μm wavelength at CO2 gas concentrations ranging from 5000 ppm down to 25 ppm. The signal change due to the CO2 gas response ranges from ∼2% at 100 ppm CO2 concentration to ∼40 % at 5000 ppm CO2 gas concentration for both CO2 gas measured in N2 and in synthetic air. CO2 gas response times are also measured for CO2 gas in N2 and in synthetic air at concentrations of 5000 ppm, 1000 ppm and 400 ppm. The gas response times measured around 2 s and lower. Introduction of humidity show some minor effect (<3%) to the CO2 gas response and seems most perturbed at 10 % relative humidity. To the best of our knowledge, this is the first demonstration using ScAlN-based pyroelectric detectors in NDIR CO2 gas sensing, towards practical sensor applications. The results obtained show promise in using CMOS-compatible MEMS ScAlN-based pyroelectric detectors for NDIR gas sensing, opening up possibilities for low cost, wafer-level, monolithic NDIR gas sensors with small footprint integrated with CMOS circuits.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.