Abstract

We developed a non-destructive evaluation (NDE) system using an HTS SQUID array in order to examine rare-earth (RE)-123 HTS coated conductors striated into multi-filamentary lines. The 5-channel HTS SQUID gradiometer array was composed of ramp-edge junctions with LaErBaCuO and SmBaCuO electrode layers, and fabricated by using an HTS multi layer fabrication technique. The planar gradiometers with 1 × 1 mm 2 pickup loops and a baseline of 1 mm detected the vertical element of magnetic field gradient induced around defects by an eddy current. The gradiometer array cooled by thermal conduction from a liquid nitrogen bath was placed above the coated conductor on the main stage with a lift-off of about 1.5 mm. A coated conductor was fed from a reel to reel, and cooled blow its T c by stages connected to Gifford–Mcmahon (GM) coolers. By employing a 3 kHz induction current generating the maximum field of 0.14 mT, we could identify a distribution of defects in a long-length non-striated conductor. Furthermore, we could detect and distinguish three kinds of defects, existence of a spotty normal-state region, electrical short between striated filaments, and delamination of the superconducting layer from the Hastelloy tape for each filamentary superconducting line at a high speed up to 30 m/h.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.