Abstract
Nd3+:YAG crystals have been used to develop photonic devices since the 1960s. Its unique properties, which stem from the combination of the YAG structure with lanthanide ions, have made it the most widely employed material in commercial solid-state lasers. This work reports the synthesis of dense Nd3+:YAG particles prepared by spray pyrolysis. During the synthesis, no clusters emerged, and the particles did not coalesce even after thermal treatment at 1100 °C. All characterization confirmed that the YAG phase was obtained as a spherical micro- and sub-micrometric material. In addition, the photoluminescence spectra showed the expected spectroscopic profile of Nd3+ replacing Y3+ at the dodecahedral sites. The presence of high Nd3+ concentration was exploited as a simultaneous gain and scatter medium for random laser application. The spray pyrolysis methodology described could be easily scaled up for a pilot setup or industrial production. Further applications as sensors or superluminescent sources can be envisaged.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.