Abstract

Lanthanide upconversion nanophosphors (Ln-UCNPs) have attracted great attention in a variety of fields, benefiting from low background fluorescence interference and a high signal-to-noise ratio of upconversion luminescence. However, the establishment of Ln-UCNPs with dual near-infrared (NIR) emission channels still remains challenging. Herein, we report the design and synthesis of Nd3+-sensitized NaYbF4:Tm@NaYF4:Yb@NaNdF4:Yb hierarchical-structured nanoparticles that emit NIR luminescence at 696 and 980 nm under excitation at 808 nm. The sensitizer-rich NaYbF4 core promotes efficient energy transfer to Tm3+. The interlayer of NaYF4:Yb effectively prevents the cross-relaxation process from Tm3+ to Nd3+ and thus enhances the luminescence emission. The introduction of Nd3+ ion as the sensitizer transforms the excitation wavelength from 980 to 808 nm, which subtly averts the laser-induced thermal effect and offers a new pathway for the NIR emission channel at 980 nm. The as-prepared nanoparticles were further applied in developing latent and blood fingerprint images, which exhibited high signal-to-noise ratio and distinguishable details under 808 nm excitation with negligible thermal damage to the sample. Our work provides a promising strategy to realize NIR-to-NIR dual-channel emissions in Ln-UCNPs. With further functionalization, such nanoparticles are expected to have great potential in forensic and biological sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call