Abstract

The utilization of single-frequency fiber lasers spans critical domains including gravitational wave detection, coherent optical communication, and atomic physics. Glass fibers doped with rare earth ions serve as pivotal gain media for them, and the quest for advanced fiber matrices is paramount. Herein, a newly developed Nd3+-doped AlF3-Na2SO4-KPO3-Zn(PO3)2 glass is reported. The glass showcases exceptional attributes including high anti-crystallization stability (>150∘C), elastic modulus (75 GPa), chemical durability (8.1×10−7g⋅cm−2⋅min−1), Nd3+ concentration (>1020ions/cm3), broad effective linewidth (45 nm), and extended lifetime (465 µs), surpassing those of conventional silica and phosphate glasses. Moreover, a custom-designed double-clad Nd3+-doped fiber with a net gain coefficient of 3.2 dB/cm at 1064 nm is fabricated, and single-frequency laser output with a narrow linewidth of 11 kHz has been obtained utilizing a 1.4-cm-long fiber, indicating the potential of this fiber as a promising gain medium for ultra-narrow-linewidth single-frequency fiber lasers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.