Abstract

Soft magnetic microwave absorbents have merits of sufficient magnetic loss and unique magnetism-frequency response characteristics, yet are limited by the low natural resonance frequencies and simplex loss mechanism. Introducing second phase has been proven to be efficient in evoking structure, magnetism and conductivity changes, but the effects on the microwave absorption is still unbeknown. In this work, the Co0.72Fe0.28 alloy magnetic absorbents with dispersedly distributed NdCo5/LaCo5 nano precipitates were prepared. By fine-tuning the doping ratios of the rare earth (RE) of Nd/La, the coercivity and conductivity show an upward trend with enhanced magnetic and dielectric losses on 2–18 GHz. On one hand, the high magneto-crystalline anisotropic RECo5 phases uplifted the holistic resonance frequency ranges and enhanced the C/X/Ku band attenuations. On the other hand, the as-spawn vacancies, heterogeneous interfaces and dislocations boosted the conductive/polarization losses of the individual magnetic alloys. As a result, the high-frequency performance was significantly improved when ensuring the impressive low-frequency loss. A remarkable minimum reflection loss (RLmin) of −76 dB was achieved in the S band, and the effective absorption bandwidth (EAB) of 7.34 GHz was obtained at only 1.7 mm, covering most of the X/Ku bands. The performance sets it apart as the highest among the reported RE-transitional alloy absorbents so far. Overall, this work provides a feasible way and novel strategy for improving the microwave absorption properties for the traditional metal alloys and their compounds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.