Abstract

ABSTRACT A systematic Sm-Nd isotopic study is reported for Paleoproterozoic to Late Paleozoic strata from the Dongchuan area in the southwestern Yangtze Block. The results, combined with the available detrital zircon U-Pb ages and Hf isotope data, constrain the provenances of these sedimentary rocks and further identify three important tectono-magmatic activities. Most of the Paleo-Mesoproterozoic samples (Dongchuan Group) display a wide T DM2 range of 1.92–2.52 Ga with corresponding ε Nd(t) values of +4.0 to −3.5, suggesting Paleoproterozoic-dominated provenances mixed with mantle-derived materials. This corresponds to the ~1.7–1.5 Ga mafic magmatic activities commonly occurred in the southwestern Yangtze Block, which are related to the early breakup of the Columbia supercontinent. The obvious vale of T DM2 and apex of ε Nd(t) occurred in the Neoproterozoic strata (~0.8 Ga) of the southwestern margin over the whole Yangtze Block. This is consistent with the widely recognized mantle-derived magmatism around the Yangtze Block related to the breakup of Rodinia. However, the decreases in Nd model ages are different among various regions, indicating that the Neoproterozoic mantle inputs are more profound in the southwestern and central Yangtze Block than the southeastern Yangtze and the Jiangnan orogenic belt. The late Ediacaran to early Cambrian strata from the southwestern Yangtze exhibit a decrease in T DM2 (from 2.00 to 1.67 Ga) and increase in ε Nd(t) (from −9.0 to −5.2). This is in accordance with the coeval juvenile crustal materials discovered in the northwestern Yangtze, which were probably derived from the assembly of the Gondwana continent. Thus, a Gondwanan affinity is suggested for the southwestern Yangtze Block. Overall, the Nd isotopic studies of the Paleoproterozoic to Late Paleozoic sedimentary strata from the southwestern Yangtze Block identified three major episodes of magmatic activities, late Paleoproterozoic (~1.7 Ga), Neoproterozoic (~0.8 Ga) and late Neoproterozoic-early Cambrian (~0.55 Ga) in the context of Columbia, Rodinia and the subsequent Gondwana supercontinents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call