Abstract

Anxiety disorder (AD) is characterized by the development of maladaptive neuronal circuits and changes to the excitatory/inhibitory (E/I) balance of the central nervous system. Although AD is considered to be heritable, specific genetic markers remain elusive. Recent genome-wide association studies (GWAS) studies have identified non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), a gene that codes for an intracellular adaptor protein involved in actin dynamics, as an important gene in the regulation of mood. Using a murine model in which NCK1 is inactivated, we show that male, but not female, mice display increased levels of context-dependent anxiety-like behaviors along with an increase in circulating serum corticosterone relative to control. Treatment of male NCK1 mutant mice with a positive allosteric modulator of the GABAA receptor rescued the anxiety-like behaviors implicating NCK1 in regulating neuronal excitability. These defects are not attributable to apparent defects in gross brain structure or in axon guidance. However, when challenged in an approach-avoidance conflict paradigm, male NCK1-deficient mice have decreased neuronal activation in the prefrontal cortex (PFC), as well as decreased activation of inhibitory interneurons in the basolateral amygdala (BLA). Finally, NCK1 deficiency results in loss of dendritic spine density in principal neurons of the BLA. Taken together, these data implicate NCK1 in the control of E/I balance in BLA. Our work identifies a novel role for NCK1 in the regulation of sex-specific neuronal circuitry necessary for controlling anxiety-like behaviors. Further, our work points to this animal model as a useful preclinical tool for the study of novel anxiolytics and its significance towards understanding sex differences in anxiolytic function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.