Abstract
Background and objectivesNon-contrast CT (NCCT) and contrast-enhanced CT (CECT) are important diagnostic tools with distinct features and applications for chest diseases. We developed two synthesizers for the mutual synthesis of NCCT and CECT and evaluated their applications. MethodsTwo synthesizers (S1 and S2) were proposed based on a generative adversarial network. S1 generated synthetic CECT (SynCECT) from NCCT and S2 generated synthetic NCCT (SynNCCT) from CECT. A new training procedure for synthesizers was proposed. Initially, the synthesizers were pretrained using self-supervised learning (SSL) and dual-energy CT (DECT) and then fine-tuned using the registered NCCT and CECT images. Pulmonary vessel segmentation from NCCT was used as an example to demonstrate the effectiveness of the synthesizers. Two strategies (ST1 and ST2) were proposed for pulmonary vessel segmentation. In ST1, CECT images were used to train a segmentation model (Model-CECT), NCCT images were converted to SynCECT through S1, and SynCECT was input to Model-CECT for testing. In ST2, CECT data were converted to SynNCCT through S2. SynNCCT and CECT-based annotations were used to train an additional model (Model-NCCT), and NCCT was input to Model-NCCT for testing. Three datasets, D1 (40 paired CTs), D2 (14 NCCTs and 14 CECTs), and D3 (49 paired DECTs), were used to evaluate the synthesizers and strategies. ResultsFor S1, the mean absolute error (MAE), mean squared error (MSE), peak signal-to-noise ratio (PSNR), and structural similarity index (SSIM) were 14.60± 2.19, 1644± 890, 34.34± 1.91, and 0.94± 0.02, respectively. For S2, they were 12.52± 2.59, 1460± 922, 35.08± 2.35, and 0.95± 0.02, respectively. Our synthesizers outperformed the counterparts of CycleGAN, Pix2Pix, and Pix2PixHD. The results of ablation studies on SSL pretraining, DECT pretraining, and fine-tuning showed that performance worsened (for example, for S1, MAE increased to 16.53± 3.10, 17.98± 3.10, and 20.57± 3.75, respectively). Model-NCCT and Model-CECT achieved dice similarity coefficients (DSC) of 0.77 and 0.86 on D1 and 0.77 and 0.72 on D2, respectively. ConclusionsThe proposed synthesizers realized mutual and high-quality synthesis between NCCT and CECT images; the training procedures, including SSL pretraining, DECT pretraining, and fine-tuning, were critical to their effectiveness. The results demonstrated the usefulness of synthesizers for pulmonary vessel segmentation from NCCT images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.