Abstract
The neural cell adhesion molecule (NCAM) regulates synapse formation and synaptic strength via mechanisms that have remained unknown. We show that NCAM associates with the postsynaptic spectrin-based scaffold, cross-linking NCAM with the N-methyl-d-aspartate (NMDA) receptor and Ca2+/calmodulin-dependent protein kinase II α (CaMKIIα) in a manner not firmly or directly linked to PSD95 and α-actinin. Clustering of NCAM promotes formation of detergent-insoluble complexes enriched in postsynaptic proteins and resembling postsynaptic densities. Disruption of the NCAM–spectrin complex decreases the size of postsynaptic densities and reduces synaptic targeting of NCAM–spectrin–associated postsynaptic proteins, including spectrin, NMDA receptors, and CaMKIIα. Degeneration of the spectrin scaffold in NCAM-deficient neurons results in an inability to recruit CaMKIIα to synapses after NMDA receptor activation, which is a critical process in NMDA receptor–dependent long-term potentiation. The combined observations indicate that NCAM promotes assembly of the spectrin-based postsynaptic signaling complex, which is required for activity-associated, long-lasting changes in synaptic strength. Its abnormal function may contribute to the etiology of neuropsychiatric disorders associated with mutations in or abnormal expression of NCAM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.