Abstract

A tool path must be determined in an efficient manner to generate NC (numerical control) code for machining. This is particularly important when machining freeform pockets with arbitrary wall geometry on a three-axis CNC machine. In this paper, a grid-based 3D navigation algorithm for generating NC tool-path data for both linear interpolation and a combination of linear and circular interpolation is presented for three-axis CNC milling of general pockets with sculptured bottom surfaces. The pocket surface is discretised by defining a grid and the navigation algorithm plans the tool motion. The grid size and the cutter diameter are chosen so that a predefined tolerance for surface roughness is satisfied. The grid-based navigation algorithm is simulated graphically and verified experimentally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call