Abstract
Negative-bias temperature instability (NBTI) on high- k metal-gate SiGe p-channel MOSFETs has been examined. SiGe p-MOSFETs shows reduced interface states and enhanced NBTI reliability compared to their Si p-channel control devices as evidenced by experimental data. Impact of NBTI reliability on digital and RF circuits has been also examined using extracted fresh and stressed BSIM4 model parameters in circuit simulation. High- k metal-gate SiGe pMOSFETs demonstrate less inverter pull-up delay, smaller noise figure of a cascode low-noise amplifier, and larger output power and power-added efficiency than their Si counterparts when subject to NBTI stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.