Abstract

Nb/starch-doped ZnO quantum dots (QDs) were prepared by a coprecipitation route. A fixed quantity of starch (st) and different concentrations (2 and 4%) of niobium (Nb) were doped in a ZnO lattice. To gain a better understanding of synthesized nanostructures, a systematic study was carried out utilizing several characterization methods. The goal of this research was to undertake methylene blue (MB) dye degradation with a synthetic material and also study its antibacterial properties. The phase structure, morphology, functional groups, optical properties, and elemental compositions of synthesized samples were investigated. Our study showed that ZnO QDs enhanced photocatalytic activity (PCA), resulting in effective MB degradation, in addition to showing good antimicrobial activity against Gram-negative relative to Gram-positive bacteria. Molecular docking study findings were in good agreement with the observed in vitro bactericidal potential and suggested ZnO, st-ZnO, and Nb/st-ZnO as possible inhibitors against dihydrofolate reductase (DHFRE.coli) and DNA gyraseE.coli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.