Abstract

Nijmegen breakage syndrome 1 (NBS1) protein is a core member of the MRE11-RAD50-NBS1 (MRN) complex that plays a crucial role in DNA damage sensing and repair in plants. Here we report that NBS1 from moss Physcomitrium patens reduces oxidative damage by lowering the cellular ROS in addition to its known role in oxidative DNA damage recovery. Real-time transcript analysis showed up-regulation of the PpNBS1 transcript under different stress conditions. Bacterial cells showed better cell survivability upon over-expressing PpNBS1 protein as compared to untransformed cells. Likewise, overexpression of PpNBS1 in tobacco plants provides improved protection against oxidative damage and exhibited a lesser amount of ROS upon exposure to oxidative stress. Moreover, PpNBS1 contributes to the antioxidant defense mechanism by positively regulating the expression of the antioxidant genes under stress conditions in transgenic tobacco plants. PpNBS1 expressing transgenic tobacco plants resulted in lesser membrane damage, lower lipid peroxidation level, and higher chlorophyll content under stress conditions. Taken together, we conclude in addition to its known role as DNA damage sensor, PpNBS1 also plays a definite role in oxidative stress mitigation by minimizing ROS accumulation in the cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.