Abstract

ABSTRACT Macroautophagy/autophagy is a conserved process in eukaryotes responsible for degrading unwanted or damaged macromolecules and organelles through the lysosome or vacuole for recycling and reutilization. Our previous studies revealed the degradation of chloroplast proteins through a pathway dependent on the ubiquitin proteasome system, known as CHLORAD. Recently, we demonstrated a role for selective autophagy in regulating chloroplast protein import and enhancing stress tolerance in plants. Specifically, we found that K63-ubiquitination of TOC components at the chloroplast outer envelope membrane is recognized by the selective autophagy adaptor NBR1, leading to the degradation of TOC proteins under UV-B irradiation and heat stresses in Arabidopsis. This process was shown to control chloroplast protein import and influence photosynthetic activity. Based on our results, we have, for the first time, demonstrated that selective autophagy plays a vital role in chloroplast protein degradation, specifically in response to certain abiotic stresses.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.