Abstract
Abstract The recent development of various wireless technologies in the 2.4GHz ISM band has led to the co-channel coexistence of heterogeneous wireless devices, such as Wi-Fi, Bluetooth, and ZigBee. This sharing of the common channel results in the challenging problem of cross-technology interference, since the wireless devices generally use diverse PHY/MAC specifications. In particular, the less capable ZigBee device may often experience unpredictably low throughput due to the interference from the powerful Wi-Fi. The ZigBee protector is an attractive solution, since it can reserve the channel on behalf of the weak ZigBee devices. The protector method, however, has a few limitations; (i) it may cause significant overhead to both ZigBee and Wi-Fi, and (ii) the ZigBee control packets are still vulnerable to the Wi-Fi interference. In this paper, we propose a novel time reservation scheme called Narrow Band Protection (NBP), that uses a protector to guard the ongoing ZigBee transmission. The key contributions are threefold: First, NBP autonomously detects any ongoing ZigBee transmissions by cross-correlating the ZigBee’s packets with the pre-defined Pseudo-random Noise (PN) sequences. By using this cross-correlation, it significantly reduces the control overhead. Second, due to the reliable cross-correlation, NBP is robust from the control packet collisions, which typically wastes channel time for both ZigBee and Wi-Fi. Third, NBP protects the burst of ZigBee packets by estimating the size of the burst, in turn, giving a semantic to the PN codebook. This is important because ZigBee is typically battery-powered and thus the long burst is advantageous for the low duty cycle operations. We first show the feasibility of NBP by implementing it on the real USRP/GNURadio platform. Then, we evaluate the performance of NBP through mathematical analysis and NS-2 simulations. The results show that NBP enhances the ZigBee throughput by up to 1.77x compared to the existing scheme.
Highlights
The unlicensed 2.4GHz ISM band has become a common playground for a plethora of wireless technologies such as Wi-Fi [1], Bluetooth, ZigBee [2], Radio-Frequency Identification (RFID) and so on
The results show that Narrow Band Protection (NBP) can determine the Wi-Fi collision by configuring the bit threshold by around 10
7 Conclusion This paper presented a new Narrow Band Protection scheme that addresses with the cross-technology interference problem between ZigBee and Wi-Fi
Summary
The unlicensed 2.4GHz ISM band has become a common playground for a plethora of wireless technologies such as Wi-Fi [1], Bluetooth, ZigBee [2], Radio-Frequency Identification (RFID) and so on. When multiple wireless technologies that run their own protocols coexist in the same channel, they usually cannot detect each other. This happens because they generally use a predefined preamble sequence at the beginning of each packet to decode the signal. In result, this causes the heterogeneous devices to freely transmit even when another device is transmitting, causing severe interference to each other. This causes the heterogeneous devices to freely transmit even when another device is transmitting, causing severe interference to each other This is called the cross-technology interference problem [3,4]. Wi-Fi networks can preempt ZigBee networks even if a ZigBee node first grabs the medium and transmits
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: EURASIP Journal on Wireless Communications and Networking
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.