Abstract

The δ-NbN thin films with different thickness have been prepared by reactive magnetron sputtering at different deposition time and exhibited alternating textures between (111) and (200) orientations as a function of thickness. In addition, the grain size, peak position, morphology, residual stress and orientation distributions of the deposited films were explored by X-ray diffraction, low-angel X-ray reflectivity, scanning electron microscopy and surface profiler. The film deposited at 300 s showed a (111) preferred orientation, changing to (200) preferred orientation at 600 s, and exhibited alternating textures between (111) and (200) preferred orientations. With further increasing deposition time, in which (200) peak position and the full width at half maximum of (111) peak also displayed a trend of alternating variation with varying deposition time. The intrinsic stress for δ-NbN films calculated by Stoney equation alternately changed with alternating textures, in which (111) orientation always takes place at relatively high intrinsic stress state and vice versa. Meanwhile, the film with (111) preferred orientation showed higher density than (200) preferred orientation. The film deposited at 4800 s owned a mixed texture of (111) and (200), showing an anisotropy distribution of (111)-oriented and (200)-oriented grains, while film deposited at 7200 s owned a strong (200) texture, displaying an isotropy distribution of (200)-oriented grains. The competitive growth between (111)-oriented and (200)-oriented grains was responsibility for alternating texture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call